首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15293篇
  免费   1477篇
  国内免费   1520篇
  2024年   8篇
  2023年   190篇
  2022年   259篇
  2021年   790篇
  2020年   655篇
  2019年   746篇
  2018年   710篇
  2017年   523篇
  2016年   672篇
  2015年   996篇
  2014年   1150篇
  2013年   1277篇
  2012年   1530篇
  2011年   1284篇
  2010年   789篇
  2009年   758篇
  2008年   819篇
  2007年   692篇
  2006年   604篇
  2005年   551篇
  2004年   397篇
  2003年   397篇
  2002年   358篇
  2001年   243篇
  2000年   206篇
  1999年   237篇
  1998年   133篇
  1997年   145篇
  1996年   140篇
  1995年   125篇
  1994年   118篇
  1993年   88篇
  1992年   96篇
  1991年   75篇
  1990年   82篇
  1989年   61篇
  1988年   58篇
  1987年   43篇
  1986年   51篇
  1985年   50篇
  1984年   34篇
  1983年   21篇
  1982年   22篇
  1981年   11篇
  1980年   10篇
  1979年   16篇
  1978年   6篇
  1977年   12篇
  1976年   9篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
32.
33.
Previous studies on spinal cord injury (SCI) have confirmed that percutaneous photobiomodulation (PBM) therapy can ameliorate immunoinflammatory responses at sites of injury, accelerate nerve regeneration, suppress glial scar formation and promote the subsequent recovery of locomotor function. The current study was performed to evaluate a large‐animal model employing implanted optical fibers to accurately irradiate targeted spinal segments. The method's feasibility and irradiation parameters that do not cause phototoxic reaction were determined, and the methodology of irradiating the spinal cord with near‐infrared light was investigated in detail. A diffusing optical fiber was implanted above the T9 spinal cord of Bama miniature pigs and used to transfer near‐infrared light (810 nm) onto the spinal cord surface. After daily irradiation with 200, 300, 500 or 1000 mW for 14 days, both sides of the irradiated area of the spinal cord were assessed for temperature changes. The condition of the spinal cord and the position of optical fiber were investigated by magnetic resonance imaging (MRI), and different parameters indicating temperature increases or phototoxicity were measured on the normal spinal cord surface due to light irradiation (ie, heat shock responses, inflammatory reactions and neuronal apoptosis), and the animals' lower‐limb neurological function and gait were assessed during the irradiation process. The implanted device was stable inside the freely moving animals, and light energy could be directly projected onto the spinal cord surface. The screening of different irradiation parameters preliminary showed that direct irradiation onto the spinal cord surface at 200 and 300 mW did not significantly increase the temperature, stress responses, inflammatory reactions and neural apoptosis, whereas irradiation at 500 mW slightly increased these parameters, and irradiation at 1000 mW induced a significant temperature increase, heat shock, inflammation and apoptosis responses. HE staining of spinal cord tissue sections did not reveal any significant structural changes of the tissues compared to the control group, and the neurological function and gait of all irradiated animals were normal. In this study, we established an in‐vivo optical fiber implantation method, which might be safe and stable and could be used to directly project light energy onto the spinal cord surface. This study might provide a new perspective for clinical applications of PBM in acute SCI.  相似文献   
34.
H-Ras is a binary switch that is activated by multiple co-factors and triggers several key cellular pathways one of which is MAPK. The specificity and magnitude of downstream activation is achieved by the spatio-temporal organization of the active H-Ras in the plasma membrane. Upon activation, the GTP bound H-Ras binds to Galectin-1 (Gal-1) and becomes transiently immobilized in short-lived nanoclusters on the plasma membrane from which the signal is propagated to Raf. In the current study we show that stabilizing the H-Ras-Gal-1 interaction, using bimolecular fluorescence complementation (BiFC), leads to prolonged immobilization of H-Ras.GTP in the plasma membrane which was measured by fluorescence recovery after photobleaching (FRAP), and increased signal out-put to the MAPK module. EM measurements of Raf recruitment to the H-Ras.GTP nanoclusters demonstrated that the enhanced signaling observed in the BiFC stabilized H-Ras.GTP nanocluster was attributed to increased H-Ras immobilization rather than to an increase in Raf recruitment. Taken together these data demonstrate that the magnitude of the signal output from a GTP-bound H-Ras nanocluster is proportional to its stability.  相似文献   
35.
36.
Differences in the bacterial community structure associated with 7 skin sites in 71 healthy people over five days showed significant correlations with age, gender, physical skin parameters, and whether participants lived in urban or rural locations in the same city. While body site explained the majority of the variance in bacterial community structure, the composition of the skin-associated bacterial communities were predominantly influenced by whether the participants were living in an urban or rural environment, with a significantly greater relative abundance of Trabulsiella in urban populations. Adults maintained greater overall microbial diversity than adolescents or the elderly, while the intragroup variation among the elderly and rural populations was significantly greater. Skin-associated bacterial community structure and composition could predict whether a sample came from an urban or a rural resident ~5x greater than random.  相似文献   
37.
Cholera toxin (CT) stimulated phospholipase activity and caused [3H]arachidonic acid (3H-AA) release in a murine macrophage/monocyte cell line. Pretreatment of cells with dexamethasone, a phospholipase A2 (PLA2) inhibitor, did not affect CT-induced 3H-AA release. In contrast, aspirin, which is an inhibitor of phospholipase C (PLC), blocked CT-induced 3H-AA release and subsequent prostaglandin (PC) synthesis. The inhibitory effect of aspirin was dose dependent, with 4 mM reducing the CT response by approximately 50%. Similarly, inhibition was time dependent, occurring when the drug was added to the culture medium as late as 30 min after CT. Brief exposure (30 min) of the cells to aspirin did not alter their subsequent response to CT, but 3H-AA release from cells exposed to aspirin for 2.5 h was irreversibly inhibited. The data suggested that CT stimulation of AA metabolism may involve increased PLC activity.  相似文献   
38.
39.
We aimed to verify a custom virtual fields method (VFM) to estimate the patient-specific biomechanical properties of human optic nerve head (ONH) tissues, given their full-field deformations induced by intraocular pressure (IOP). To verify the accuracy of VFM, we first generated ‘artificial’ ONH displacements from predetermined (known) ONH tissue biomechanical properties using finite element analysis. Using such deformations, if we are able to match back the known biomechanical properties, it would indicate that our VFM technique is accurate. The peripapillary sclera was assumed anisotropic hyperelastic, while all other ONH tissues were considered isotropic. The simulated ONH displacements were fed into the VFM algorithm to extract back the biomechanical properties. The robustness of VFM was also tested against rigid body motions and noise added to the simulated displacements. Then, the computational speed of VFM was compared to that of a gold-standard stiffness measurement method (inverse finite element method or IFEM). Finally, as proof of principle, VFM was applied to IOP-induced ONH deformation data (obtained from one subject’s eye imaged with OCT), and the biomechanical properties of the prelamina and lamina cribrosa (LC) were extracted. From given ONH displacements, VFM successfully matched back the biomechanical properties of ONH tissues with high accuracy and efficiency. For all parameters, the percentage errors were less than 0.05%. Our method was insensitive to rigid body motions and was also able to recover the material parameters in the presence of noise. VFM was also found 125 times faster than the gold-standard IFEM. Finally, the estimated shear modulus for the prelamina and the LC of the studied subject’s eye were 33.7 and 63.5 kPa, respectively. VFM may be capable of measuring the biomechanical properties of ONH tissues with high speed and accuracy. It has potential in identifying patient-specific ONH biomechanical properties in the clinic if combined with optical coherence tomography.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号